我们引入了一种新型技术和相关的高分辨率数据集,旨在精确评估基于无线信号的室内定位算法。该技术实现了基于增强的现实(AR)定位系统,该系统用于注释具有高精度位置数据的无线信号参数数据样本。我们在装饰有AR标记的区域中跟踪实用且低成本的可导航相机设置和蓝牙低能(BLE)信标的位置。我们通过使用冗余数字标记来最大程度地提高基于AR的本地化的性能。相机捕获的视频流经过一系列标记识别,子集选择和过滤操作,以产生高度精确的姿势估计。我们的结果表明,我们可以将AR定位系统的位置误差降低到0.05米以下的速率。然后,将位置数据用于注释BLE数据,这些数据由驻扎在环境中的传感器同时捕获,因此,构建具有接地真相的无线信号数据集,该数据集允许准确评估基于无线信号的本地化系统。
translated by 谷歌翻译
Common disabilities like stroke and spinal cord injuries may cause loss of motor function in hands. They can be treated with robot assisted rehabilitation techniques, like continuously opening and closing the hand with help of a robot, in a cheaper, and less time consuming manner than traditional methods. Hand exoskeletons are developed to assist rehabilitation, but their bulky nature brings with it certain challenges. As soft robots use elastomeric and fabric elements rather than heavy links, and operate with pneumatic, hydraulic or tendon based rather than traditional rotary or linear motors, soft hand exoskeletons are deemed a better option in relation to rehabilitation.
translated by 谷歌翻译
Smart retail stores are becoming the fact of our lives. Several computer vision and sensor based systems are working together to achieve such a complex and automated operation. Besides, the retail sector already has several open and challenging problems which can be solved with the help of pattern recognition and computer vision methods. One important problem to be tackled is the planogram compliance control. In this study, we propose a novel method to solve it. The proposed method is based on object detection, planogram compliance control, and focused and iterative search steps. The object detection step is formed by local feature extraction and implicit shape model formation. The planogram compliance control step is formed by sequence alignment via the modified Needleman-Wunsch algorithm. The focused and iterative search step aims to improve the performance of the object detection and planogram compliance control steps. We tested all three steps on two different datasets. Based on these tests, we summarize the key findings as well as strengths and weaknesses of the proposed method.
translated by 谷歌翻译
We demonstrate transfer learning-assisted neural network models for optical matrix multipliers with scarce measurement data. Our approach uses <10\% of experimental data needed for best performance and outperforms analytical models for a Mach-Zehnder interferometer mesh.
translated by 谷歌翻译
We propose a method for in-hand 3D scanning of an unknown object from a sequence of color images. We cast the problem as reconstructing the object surface from un-posed multi-view images and rely on a neural implicit surface representation that captures both the geometry and the appearance of the object. By contrast with most NeRF-based methods, we do not assume that the camera-object relative poses are known and instead simultaneously optimize both the object shape and the pose trajectory. As global optimization over all the shape and pose parameters is prone to fail without coarse-level initialization of the poses, we propose an incremental approach which starts by splitting the sequence into carefully selected overlapping segments within which the optimization is likely to succeed. We incrementally reconstruct the object shape and track the object poses independently within each segment, and later merge all the segments by aligning poses estimated at the overlapping frames. Finally, we perform a global optimization over all the aligned segments to achieve full reconstruction. We experimentally show that the proposed method is able to reconstruct the shape and color of both textured and challenging texture-less objects, outperforms classical methods that rely only on appearance features, and its performance is close to recent methods that assume known camera poses.
translated by 谷歌翻译
We investigate the problem of risk averse robot path planning using the deep reinforcement learning and distributionally robust optimization perspectives. Our problem formulation involves modelling the robot as a stochastic linear dynamical system, assuming that a collection of process noise samples is available. We cast the risk averse motion planning problem as a Markov decision process and propose a continuous reward function design that explicitly takes into account the risk of collision with obstacles while encouraging the robot's motion towards the goal. We learn the risk-averse robot control actions through Lipschitz approximated Wasserstein distributionally robust deep Q-learning to hedge against the noise uncertainty. The learned control actions result in a safe and risk averse trajectory from the source to the goal, avoiding all the obstacles. Various supporting numerical simulations are presented to demonstrate our proposed approach.
translated by 谷歌翻译
本文档描述了Spotify出于学术研究目的发布的葡萄牙语播客数据集。我们概述了如何采样数据,有关集合的一些基本统计数据,以及有关巴西和葡萄牙方言的分发信息的简要信息。
translated by 谷歌翻译
结构分解方法,例如普遍的高树木分解,已成功用于解决约束满意度问题(CSP)。由于可以重复使用分解以求解具有相同约束范围的CSP,因此即使计算本身很难,将资源投资于计算良好的分解是有益的。不幸的是,即使示波器仅略有变化,当前方法也需要计算全新的分解。在本文中,我们迈出了解决CSP $ P $分解的问题的第一步,以使其成为由$ P $修改产生的新CSP $ P'$的有效分解。即使从理论上讲问题很难,我们还是提出并实施了一个有效更新GHD的框架。我们算法的实验评估强烈提出了实际适用性。
translated by 谷歌翻译
我们提出了一种方法,用于估计具有单个RGB图像的可用3D模型的刚性对象的6DOF姿势。与基于经典对应的方法不同,该方法可以预测输入图像的像素的3D对象坐标,该建议的方法可以预测3D对象坐标在相机frustum中采样的3D查询点。从像素到3D点的移动,这是受到3D重建方法的最新PIFU式方法的启发,可以对整个对象(包括(自我)遮挡部分)进行推理。对于与与像素对齐的图像功能相关的3D查询点,我们训练完全连接的神经网络来预测:(i)相应的3D对象坐标,以及(ii)签名到对象表面的签名距离,首先定义仅适用于地表附近的查询点。我们将该网络实现的映射称为神经通信字段。然后,通过Kabsch-Ransac算法从预测的3D-3D对应关系中稳健地估计对象姿势。所提出的方法在三个BOP数据集上实现了最先进的结果,并且在咬合挑战性案例中表现出了优越。项目网站在:linhuang17.github.io/ncf。
translated by 谷歌翻译
几年来,深度学习方法已成功地应用于遥感问题。在这些方法中,基于CNN的模型在使用卫星或空中图像解决土地分类问题方面具有很高的精度。尽管这些模型的精度很高,但通常具有较大的内存要求。另一方面,希望拥有用于应用程序的小型型号,例如在无人机上实施的应用程序,并且记忆空间较低。不幸的是,小型CNN型号与其大型版本那样不提供高精度。在这项研究中,我们提出了一种新颖的方法,可以通过向其注入传统特征来提高CNN模型的准确性,尤其是尺寸较小的方法。为了测试所提出方法的有效性,我们将其应用于CNN模型Squeezenet,MobilenetV2,ShufflenetV2,VGG16和Resnet50V2,其大小为0.5 MB至528 MB。我们使用了样本平均值,灰度合作矩阵特征,HU矩,局部二进制图案,定向梯度的直方图和颜色不变性作为传统的注射特征。我们在EuroSat数据集上测试了提出的方法,以执行土地分类。我们的实验结果表明,所提出的方法显着提高了土地分类精度,尤其是应用于小型CNN模型时。
translated by 谷歌翻译